基于最小二乘滤波-肖维勒准则的光伏异常功率数据清洗及预测应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16112/j.cnki.53-1223/n.2021.02.451

基于最小二乘滤波-肖维勒准则的光伏异常功率数据清洗及预测应用

引用
光伏功率数据受天气情况影响难免存在异常使得多步预测难以达到理想的准确率.为克服这些缺陷,利用最小二乘滤波能准确识别数据时间序列突变的优点,建立了基于最小二乘滤波-肖维勒准则的光伏功率异常数据识别模型.将修正后的吉林省两座光伏电站功率数据应用于傅里叶分解-秩次集对分析模型进行超短期预测,仿真结果表明,与肖维勒准则相比,最小二乘滤波-肖维勒准则模型具有识别准确率高、适用性良好等优点,且修正后的数据运用于超短期预测也具有较高的预测精度.

光伏异常功率识别、超短期预测、最小二乘滤波、肖维勒准则、秩次集对分析

46

TM615(发电、发电厂)

国家电网有限公司总部科技项目522300190009

2021-05-08(万方平台首次上网日期,不代表论文的发表时间)

共13页

59-71

相关文献
评论
暂无封面信息
查看本期封面目录

昆明理工大学学报(自然科学版)

1007-855/X

53-1123/T

46

2021,46(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn