基于BP网络和LS-SVM的特征提取和故障识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-855x.2010.05.010

基于BP网络和LS-SVM的特征提取和故障识别方法

引用
针对设备故障诊断过程中构建特征参数冗余,且进行高分辨率信息压缩所需的映射通常具有非线性的问题,应用BP神经网络提取设备状态特征,给出了进行设备状态特征集约简的实施方法.然后利用最小二乘支持向量机(LS-SVM)分类器的训练过程遵循结构风险最小化原则,能够避免传统机器学习的模型选择、过学习、局部极小等问题,具有有效解决非线性和高维模式识别问题的优点,构建了故障识别模型.最后将基于BP网络和LS-SVM的特征提取和故障识别方法用于离心泵机组的四种工作状态识别,并进行了ROC曲线分析,研究结果表明诊断实验的性能评价为优.

特征提取、故障识别、BP网络、最小二乘支持向量机、ROC曲线

35

TP391.5(计算技术、计算机技术)

2011-01-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

41-46

相关文献
评论
暂无封面信息
查看本期封面目录

昆明理工大学学报(理工版)

1007-855X

53-1123/T

35

2010,35(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn