基于LAR和在线LS-SVR的非线性时间序列故障预报
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-855x.2010.02.014

基于LAR和在线LS-SVR的非线性时间序列故障预报

引用
针对非线性系统的故障预报,设计了一种在线最小二乘支持向量回归机(LS-SVR)算法,提出了一种基于在线LS-SVR和线性AR(LAR)混合预测的故障预报新方法.用LAR对非线性系统进行局部线性建模,用LS-SVR在线补偿局部线性模型的建模误差,实现了非线性时间序列的一步预测,并推广到N步预测.基于已知的正常时间序列数据,直接对当前N步预测值进行异常估计,实现故障预报,提高了实时性.同时方法的误检率和漏检率还可人为调整,对不同对象具有普遍性.仿真实验证明了方法的有效性.

故障预报、时间序列预测、异常估计、最小二乘支持向量回归机

35

TM307.1(电机)

上海市高校优秀青年教师专项基金资助项目gcd07047

2010-06-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

66-71

相关文献
评论
暂无封面信息
查看本期封面目录

昆明理工大学学报(理工版)

1007-855X

53-1123/T

35

2010,35(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn