10.3969/j.issn.1007-855X.2006.04.027
一种多属性约简支持向量机混合分类方法
针对属性特别多仅用一种属性约简方法难以实现有效约简的情况,提出了基于双重属性约简的混合支持向量机分类方法.通过引入贡献率和正确率两个概念,首先采用主成分分析算法è计算各个条件属性的贡献率,根据贡献率大小和给定的阈值去掉条件属性中贡献率小的成分,提取信息量最大的主要成分;然后再基于粗糙集的属性约简理论,计算这些主要成分对决策变量的正确率,对这些属性进行第二次约简;该方法采用定性定量相结合的方式,可以最大程度地去除属性集中冗余的或不重要的属性,保证将最简的属性样本集输入支持向量机进行建模预测.最后的仿真试验验证了我们所提方法的有效性和正确性.
粗糙集、支持向量机、混合分类算法
31
TP18(自动化基础理论)
2006-10-09(万方平台首次上网日期,不代表论文的发表时间)
共5页
113-117