最小相关度优化PNARC算法的审计数据关联规则挖掘模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13774/j.cnki.kjtb.2017.12.034

最小相关度优化PNARC算法的审计数据关联规则挖掘模型

引用
为解决关系国计民生重要行业事后审计的弊端,本文针对PNARC算法在审计数据关联规则挖掘时存在的置信度约束无效、挖掘精度不高等问题,提出了一种最小相关度优化PNARC算法的审计数据关联规则挖掘模型.首先对置信度进行阈值双重优化,以提高负关联规则的程度,减少不相关的关联规则,然后对最小相关度进行概率分析,降低无关规则的产生几率.仿真实验结果表明,无论在挖掘精度还是算法运行时间上,都具有比PNARC算法更优异的性能.

审计数据挖掘、PNARC算法优化、最小相关度、双重置信度、置信度约束

33

TP301.6(计算技术、计算机技术)

2017年度苏州工业园区服务外包职业学院校级教改项目JG-201705

2018-01-15(万方平台首次上网日期,不代表论文的发表时间)

共4页

158-161

相关文献
评论
暂无封面信息
查看本期封面目录

科技通报

1001-7119

33-1079/N

33

2017,33(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn