中层特征块分类的运动视频运动员检测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13774/j.cnki.kjtb.2017.12.029

中层特征块分类的运动视频运动员检测模型

引用
针对单一的特征提取算法在运动员检测中还存在漏检较多的问题,本文提出了一种中层特征块分类的运动视频运动员检测模型.首先采用中层特征块作为描述运动员的特征,然后采用SLIC算法进行超像素分割,利用像素的CIELAB颜色空间和XY空间坐标构建像素的5维特征,最后采用高斯分量的全协方差混合高斯模型建立前景背景像素描述模型,提高检测精度.仿真实验结果表明,本文提出的改进模型,相比较HOG算法和SVM算法,检测结果更准确的表示了运动员区域.

特征提取、运动视频、中层特征块分类、运动员检测、超像素分割、全协方差描述

33

TN911.73

江西省教改课题JXJG-14-49-8

2018-01-15(万方平台首次上网日期,不代表论文的发表时间)

共4页

137-140

相关文献
评论
暂无封面信息
查看本期封面目录

科技通报

1001-7119

33-1079/N

33

2017,33(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn