基于MCS-RELM的网络安全态势预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13774/j.cnki.kjtb.2017.11.045

基于MCS-RELM的网络安全态势预测模型

引用
为了提高网络安全态势的预测准确性,提出一种改进布谷鸟搜索算法和正则极限学习机相融合的网络安全态势预测模型.首先将一维的网络安全态势数据重构成多维时间序列,然后将训练样本集输入到正则极限学习机进行学习,并采用改进布谷鸟搜索算法优化输入权值和隐含层阈值,建立网络安全态势预测模型,最后采用Honeynet数据集对模型性能进行测试.结果表明,相对于其它网络安全态势预测模型,本文模型可更加准确描述网络安全态势的变化趋势,不仅提高了网络安全态势预测准确性,而且加快了建模速度,可以满足网络安全态势在线预测要求.

网络安全态势、正则极限学习机、布谷鸟搜索算法、预测模型

33

TP393(计算技术、计算机技术)

国家自然科学基金;四川省教育厅重点项目

2017-12-21(万方平台首次上网日期,不代表论文的发表时间)

共5页

192-196

相关文献
评论
暂无封面信息
查看本期封面目录

科技通报

1001-7119

33-1079/N

33

2017,33(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn