并行优化KNN算法的交通运输路况预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-7119.2016.09.040

并行优化KNN算法的交通运输路况预测模型

引用
针对标准KNN算法在交通运输路况预测的应用中还存在误差较高等问题。本文提出了一种基于改进粒子群并行优化KNN算法的交通运输路况预测模型,首先在采用粒子群算法对KNN算法进行优化前,引入变异操作并结合神经网络中的Sigmoid型函数对粒子群算法的特征子集进行优化,然后采用最优化学习策略对改进粒子群算法的运算性能进行优化,最后采用改进的粒子群算法把改进的KNN算法的待优化参数随机初始化为一组粒子的位置和速度,并根据适应值函数计算每个粒子的适应度。仿真实验结果表明,本文提出的改进粒子群算法具有较好的收敛性能,基于改进粒子群并行优化的KNN算法在交通运输路况的预测中误差较小。

交通运输、路况预测、KNN预测模型、并行优化、粒子群算法、特征子集

32

U491.1+4(交通工程与公路运输技术管理)

河北省教育厅重点项目No.ZD2015059;唐山市科技局项目No.13130216Z。

2016-11-02(万方平台首次上网日期,不代表论文的发表时间)

共5页

182-186

相关文献
评论
暂无封面信息
查看本期封面目录

科技通报

1001-7119

33-1079/N

32

2016,32(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn