10.3969/j.issn.1001-7119.2015.06.071
基于贝叶斯粗糙集的大数据频繁项挖掘技术
对大数据的频繁项集挖掘是关联规则挖掘的关键步骤,通过有效的频繁项挖掘提高大数据量数据库的访问效率。传统方法中对大数据的频繁项集挖掘采用FP-Growth的粗糙集挖掘算法,扩展性和容错性不好。提出一种基于贝叶斯粗糙集的大数据频繁项挖掘技术,引入后缀项表的概念,通过后缀项表的构建,保留频繁项集的完整信息。构建FP-Tree,生成闭频繁项集,计算样本的密度,并抽取高密度区域的点集作为聚类中心集合,进行后缀项表的构造,按支持度分成若干集合,对各约简集内的属性集合进行融合,用变精度粗糙集的贝叶斯粗糙进行数据挖掘算法改进,仿真结果表明,算法不受可变参数的影响,鲁棒性较高,数据挖掘的准确度较高,运行时间较短。算法将在人工智能和数据挖掘领域具有更广的应用前景。
贝叶斯粗糙集、频繁项挖掘、大数据
TP311(计算技术、计算机技术)
四川省教育厅自然科学基金No.13ZA0136。
2015-07-16(万方平台首次上网日期,不代表论文的发表时间)
共3页
211-213