基于贝叶斯粗糙集的大数据频繁项挖掘技术
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-7119.2015.06.071

基于贝叶斯粗糙集的大数据频繁项挖掘技术

引用
对大数据的频繁项集挖掘是关联规则挖掘的关键步骤,通过有效的频繁项挖掘提高大数据量数据库的访问效率。传统方法中对大数据的频繁项集挖掘采用FP-Growth的粗糙集挖掘算法,扩展性和容错性不好。提出一种基于贝叶斯粗糙集的大数据频繁项挖掘技术,引入后缀项表的概念,通过后缀项表的构建,保留频繁项集的完整信息。构建FP-Tree,生成闭频繁项集,计算样本的密度,并抽取高密度区域的点集作为聚类中心集合,进行后缀项表的构造,按支持度分成若干集合,对各约简集内的属性集合进行融合,用变精度粗糙集的贝叶斯粗糙进行数据挖掘算法改进,仿真结果表明,算法不受可变参数的影响,鲁棒性较高,数据挖掘的准确度较高,运行时间较短。算法将在人工智能和数据挖掘领域具有更广的应用前景。

贝叶斯粗糙集、频繁项挖掘、大数据

TP311(计算技术、计算机技术)

四川省教育厅自然科学基金No.13ZA0136。

2015-07-16(万方平台首次上网日期,不代表论文的发表时间)

共3页

211-213

相关文献
评论
暂无封面信息
查看本期封面目录

科技通报

1001-7119

33-1079/N

2015,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn