喉区极光的机器识别
喉区极光是一种发生在电离层对流喉区附近的极光现象,是极光卵向低纬侧延伸出的南北向分立结构,其可能对应由磁鞘高速流与磁层顶作用引发的磁层顶重联过程.喉区极光研究对深入理解太阳风-磁层-电离层耦合过程具有重要意义.从长期观测所积累的大量全天空极光观测数据中准确高效识别出喉区极光结构,是开展喉区极光统计研究的基础.本文利用北极黄河站2003-2017年全天空成像仪的极光观测数据,建立了喉区极光图像标注数据集;基于密集连接卷积神经网络(DenseNet)对极光图像全局高维表征的自动学习,首次实现了喉区极光结构的机器识别.算法对喉区极光识别准确率达96%,且具有良好的泛化性能.研究表明基于深度学习的图像识别方法可用于从海量极光观测数据中自动识别喉区极光事件.
喉区极光;图像分类;密集连接卷积网络
41
P353(空间物理)
中国科学院"十三五"信息化建设专项;北京市科技计划空间科学大数据管理与应用服务平台建设项目
2021-09-14(万方平台首次上网日期,不代表论文的发表时间)
共13页
654-666