基于机器学习的二次电子发射唯象模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-7135.2022.04.006

基于机器学习的二次电子发射唯象模型

引用
基于机器学习和深度人工神经网络(artificial neural network,ANN)提出一种二次电子发射唯象模型.利用Vaughan模型生成先验数据集,用于训练生成描述二次电子发射一般规律的先验知识ANN模型,并在不同参数条件下验证了先验知识ANN模型的正确性.然后,分别利用银和铝合金材料的二次电子发射系数实验数据修正先验知识ANN模型,分别得到了描述两种材料的特异ANN模型.测试结果表明,特异ANN模型计算结果与实验结果相比的平均绝对误差较Vaughan模型和Furman模型降低了30%以上,与复合唯象模型精度相当或更高.在小样本条件下测试了二次电子发射ANN模型的正确性,验证了分步训练方式的有效性和二次电子发射ANN模型对于小样本集的适应性.提出的基于机器学习的二次电子发射唯象模型能够避免复杂的参数修正过程,能够基于先验知识提升模型对于小样本的适应性,能够实现二次电子发射系数的连续插值,适于在数值模拟软件中使用.

二次电子发射、机器学习、唯象模型

19

O462.2;V443(真空电子学(电子物理学))

国家自然科学基金;国家自然科学基金

2022-10-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

50-57

相关文献
评论
暂无封面信息
查看本期封面目录

空间电子技术

1674-7135

61-1420/TN

19

2022,19(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn