10.13966/j.cnki.kfjyyj.2019.01.001
如何使用数据:回归基于理解的深度学习和测评——访国际知名学习科学专家戴维·谢弗
大数据时代的到来,给学习科学研究人类的学习及如何促进深度学习提供了机遇,但也存在一种迷思,即当我们拥有了海量数据,在不了解数据背后含义的前提下,就能依靠统计方法发现以往无法发现的有意义模式,提供智能化的教学建议,甚至实现智慧教育.单纯依靠大数据驱动,真能实现对教与学变革的期待和目标吗?如何利用信息技术和教育大数据真正促进深度学习,并将深度学习和测评相联系?本期高阶访谈有幸邀请到国际知名学习科学专家戴维·谢弗(David Shaffer)教授分享他关于大数据时代下学习和测评的观点和经验.戴维·谢弗是美国威斯康星大学麦迪逊分校教育心理系学习科学研究讲席教授,哥本哈根奥尔堡大学学习分析研究客座教授和威斯康星州教育研究中心数据科学家,主要研究如何开发和评估复杂问题解决能力和协作思维技能.谢弗教授出版了《电脑游戏如何帮助孩子们学习》、《量化民族志》(Quantitative Ethnography)等专著,在《计算机与教育》《教育研究者》《教学科学》《思维、文化和活动》等国际知名期刊发表了百余篇游戏化学习、学习分析学术论文.
深度学习、数据挖掘、量化民族志、认知框架
25
G434(电化教育)
2016年度教育部人文社会科学青年项目"协作问题解决能力在线测评研究"16YJC880085;中央高校基本科研业务费专项资金40500-20101-222025
2019-05-31(万方平台首次上网日期,不代表论文的发表时间)
共9页
4-12