基于改进RBF神经网络的采煤机截割煤岩性状智能识别
综采工作面煤岩分界面识别是采煤机滚筒高度自适应调节的关键和难点,为了在不增加额外设备的情况下准确识别综采工作面煤岩分界面,从采煤机滚筒分别截割煤层和岩层的表现性状出发,提出一种基于改进RBF神经网络的采煤机截割煤岩性状智能识别方法,使采煤机滚筒能够高速实时判别煤岩.该方法根据采煤机截割电流、牵引电流和摇臂调高液压缸阻力的变化,采用改进的萤火虫算法对RBF神经网络的基函数参数进行优化,并采用优化后的RBF神经网络模型对当前截割的煤岩性状进行识别.在耿村煤矿12150综采工作面实测数据的基础上开展试验,结果表明,基于改进RBF神经网络的煤岩性状识别模型对采煤机截割对象的识别准确率达到93.94%.利用该模型进行煤岩性状识别,无需加装额外探测设备,响应速度快、识别率高,有较好的工程应用潜力.
煤岩性状识别;采煤机;RBF神经网络;萤火虫算法
41
TU378(建筑结构)
国家重点研发计划;河南省科技攻关项目;河南省高等学校重点科研项目
2022-01-12(万方平台首次上网日期,不代表论文的发表时间)
共9页
43-51