基于学习速率与更新向量的混合云数据冗余值迭代算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于学习速率与更新向量的混合云数据冗余值迭代算法

引用
针对传统混合云数据冗余值迭代算法的平均回报值较低、收敛稳定性较差、收敛动作规模较小等问题,提出一种基于学习速率与更新向量的混合云数据冗余值迭代算法.首先,构建混合云数据冗余值值函数,在该函数中引入一个新的参数更新权重向量,基于深度学习中学习速率要求,获取值函数的稳定值;其次,依据获取的稳定值计算值函数稳定值向量,利用新权值处理稳定值向量,获取值函数更新向量;最后,对权值增量进行计算,结合哈希表完成混合云数据冗余值的迭代研究.实验结果表明,该算法的平均回报值最高,且收敛速度最快.

学习速率、更新向量、深度学习、混合云数据、冗余值迭代算法

39

TP181(自动化基础理论)

国家自然科学基金资助项目41071262,61300230

2020-10-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

114-119

相关文献
评论
暂无封面信息
查看本期封面目录

河南理工大学学报(自然科学版)

1673-9787

41-1384/N

39

2020,39(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn