3种人工神经网络模型预测大肠癌的初步研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9455.2011.08.022

3种人工神经网络模型预测大肠癌的初步研究

引用
目的 探讨大肠癌血清蛋白标志物、肿瘤标志物及联合多标志物人工神经网络(ANN)模型在预测大肠癌中的价值.方法 大肠癌与健康对照血清样本106例,利用表面增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)检测血清蛋白质谱并筛选大肠癌蛋白标志物,电化学发光法检测癌胚抗原(CEA)、甲胎蛋白(AFP)、糖类抗原72-4(CA72-4)和CA19-9分别建立蛋白标志物、肿瘤标志物及蛋白标志物与肿瘤标志物结合的多标志物ANN模型.结果 大肠癌患者和对照组间比较差异有统计学意义(P<0.001),筛选4个质荷比(m/z)分别为4 095、5 640、4 480、7 620 m/z蛋白建立ANN模型,预测大肠癌敏感度和特异度为92.3%和83.3%;肿瘤标志物模型预测大肠癌的敏感度为73.1%,特异度86.7%;联合筛选的4个标志蛋白和CEA、CA72-4建立的模型诊断大肠癌敏感度和特异度分别为92.3%和96.7%.结论 联合蛋白标志物和肿瘤标志物建立ANN模型,在预测大肠癌中显示高通量、高敏感性和高特异性的特点,具有潜在应用价值.

大肠癌、表面增强激光解吸电离飞行时间质谱、人工神经网络、肿瘤标志物

8

F32;F20

2011-06-09(万方平台首次上网日期,不代表论文的发表时间)

共3页

941-942,944

相关文献
评论
暂无封面信息
查看本期封面目录

检验医学与临床

1672-9455

50-1167/R

8

2011,8(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn