基于参数优化VMD和多尺度排列熵的齿轮故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19344/j.cnki.issn1671-5276.2021.06.030

基于参数优化VMD和多尺度排列熵的齿轮故障诊断

引用
针对齿轮故障特征在单一尺度难以全面提取的问题,提出一种基于参数优化的变分模态分解和多尺度排列熵的齿轮故障诊断方法.利用改进的蝙蝠算法对变分模态分解中的参数K和a进行全局寻优,以局部极小包络熵作为适应度值,搜寻K和a的最优组合.经VMD分解得到既定的若干IMF分量,分别计算其相应的多尺度排列熵,构建故障特征向量,输入到极限学习机进行训练和识别,进而实现齿轮的故障诊断.实验表明,该方法具有非常好的分类性能,故障诊断效果显著.

变分模态分解;多尺度排列熵;改进蝙蝠算法;极限学习机;故障诊断

50

TH132.41

福建省自然科学基金2019J05024

2022-01-21(万方平台首次上网日期,不代表论文的发表时间)

共5页

114-117,128

相关文献
评论
暂无封面信息
查看本期封面目录

机械制造与自动化

1671-5276

32-1643/TH

50

2021,50(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn