基于转子端数据驱动LSTM-CNN模型的高速旋转系统运行状态识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3901/JME.2023.01.131

基于转子端数据驱动LSTM-CNN模型的高速旋转系统运行状态识别方法

引用
针对复杂结构高速转轴运行状态难以准确实时监测与识别的问题,提出了一种基于转子系统数据驱动的复合神经网络转轴工况识别方法.首先,提出了一种基于长短期记忆网络(Long short-term memory,LSTM)和卷积神经网络(Convolutional neural networks,CNN)的复合神经网络模型(LSTM-CNN).然后,建立双盘转子动力学仿真模型,并利用Newmark-β法对转子系统进行数值求解,获得转子系统关键固定节点动力学响应特征;同时基于有限元仿真获得关键旋转节点的动力学响应特征,并将两类数据分别导入LSTM-CNN模型中进行工况识别,并对其准确率和效率进行比较分析.最后,设计搭建高速转子实验平台,获取转子端和固定端数据分别对模型进行训练与验证,比较不同模型对高速转轴运行状态的识别能力.仿真数据与实验验证分析结果均表明基于转子端数据驱动的LSTM-CNN模型识别比传统的基于固定端数据驱动的识别方法具有更优的识别精度和效率.

高速转轴、原位在线测量、复合神经网络、运行状态识别

59

TH17

国家自然科学基金;国家自然科学基金;浙江省自然科学基金重点项目;电子元器件可靠性物理;技术重点实验室开发基金资助项目

2023-04-20(万方平台首次上网日期,不代表论文的发表时间)

共10页

131-140

相关文献
评论
暂无封面信息
查看本期封面目录

机械工程学报

0577-6686

11-2187/TH

59

2023,59(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn