基于函数型数据分析的半导体生产过程监控
提出一种基于函数型数据分析的非平稳生产状态下的多批次生产过程监控方法.引入函数型数据分析方法将三维数据中的每个变量沿时间方向进行函数拟合,从而将三维离散数据矩阵转化为二维函数矩阵.对各个变量曲线求取二阶导数,消除非平稳生产状态所导致的均值波动现象,增加建模的准确性.在此基础上,利用函数型主成分分析方法对各个变量的导数曲线进行特征提取,并使用基于权重的主成分融合方法,获得函数型主成分矩阵.利用支持向量数据描述方法对函数型主成分矩阵进行监控,并将其应用于工业半导体生产过程的监控中.结果表明,基于函数型数据分析的监控方法与传统方法相比,具有更低的漏检率,验证了新方法的有效性.
函数型数据分析、函数型主成分分析、过程监控、非平稳生产过程
54
TP277(自动化技术及设备)
省部共建耐火材料与冶金国家重点实验室开放基金资助项目G201704
2019-03-07(万方平台首次上网日期,不代表论文的发表时间)
共8页
62-69