基于深度学习理论的机械装备大数据健康监测方法
机械装备正在朝着高速、高精、高效方向发展,为了确保这些装备的健康运行,健康监测系统采集了海量数据来反映机械的健康状况,促使机械健康监测领域进入了"大数据"时代.机械大数据具有大容量、多样性与高速率的特点,研究和利用先进的理论与方法,从机械装备大数据中挖掘信息,高效、准确地识别装备的健康状况,成为机械装备健康监测领域面临的新问题.深度学习理论作为模式识别和机器学习领域最新的研究成果,以强大的建模和表征能力在图像和语音处理等领域的大数据处理方面取得了丰硕的成果.结合机械大数据的特点与深度学习的优势,提出了一种新的机械装备健康监测方法.该方法通过深度学习利用机械频域信号训练深度神经网络,其优势在于能够摆脱对大量信号处理技术与诊断经验的依赖,完成故障特征的自适应提取与健康状况的智能诊断,因此克服了传统智能诊断方法的两大缺陷:需要掌握大量的信号处理技术结合丰富的工程实践经验来提取故障特征;使用浅层模型难以表征大数据情况下信号与健康状况之间复杂的映射关系.试验结果表明,该方法实现了多种工况、大量样本下多级齿轮传动系统不同故障位置不同故障类型的故障特征自适应提取与健康状况准确识别.
机械健康监测、深度学习理论、大数据分析
51
TH17
国家自然科学基金51475355,51222503;陕西省自然科学基础研究计划2013JQ7011;中央高校基本科研业务费专项资金2012jdgz01
2015-12-11(万方平台首次上网日期,不代表论文的发表时间)
共8页
49-56