Kriging代理模型下基于垂距的多点取样算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3901/JME.2015.09.153

Kriging代理模型下基于垂距的多点取样算法

引用
代理模型由于可以有效地缩减学科分析时间,被广泛应用于优化领域。而构建高精度代理模型则取决于样本点在设计空间中的分布。为了建立拟合效率高的近似模型,在已有Kriging代理模型基础上,提出一种基于垂距和最大化点均方差取样(Integrated mean square error, IMSE)的多点取样算法,以保证预测精度的同时减少样本数量。该方法将垂距作为判定设计变量取值的标准,进行数据点的初步筛选。选取高斯函数作为设计点之间的相关函数,并且在边缘附近进一步修正。针对实际算例,将该取样算法与多点加点准则比较,结果表明使用的方法在保证全局精度的基础上,采用较少的采样点构建代理模型,具有较高的局部近似精度。

Kriging模型、取样算法、垂距、最大化均方差、相关函数

TP301(计算技术、计算机技术)

航空科学基金2012ZB53012;国家自然科学基金51205315;西北工业大学基础研究基金JCY20130126资助项目。

2015-05-27(万方平台首次上网日期,不代表论文的发表时间)

共6页

153-158

相关文献
评论
暂无封面信息
查看本期封面目录

机械工程学报

0577-6686

11-2187/TH

2015,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn