基于过滤器技术的约束粒子群优化算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3901/JME.2015.09.137

基于过滤器技术的约束粒子群优化算法

引用
工程设计中处理约束优化常采用罚函数法,但其优化结果敏感于惩罚因子,针对特定的实际问题往往需要多次试验以得到合适的罚因子取值。为了避免反复的参数选取测试过程,将过滤器约束处理机制和粒子群优化(Particle swarm optimization, PSO)相结合用于求解约束优化问题。过滤器方法基于多目标规划中的支配思想,以一组互不支配点所对应的目标值与违背度对构成过滤器,利用其处理约束可以避免使用罚函数。基于过滤器的约束 PSO 算法在粒子进化过程中,对各粒子历史最优解和粒子群历史最优解分别构造滤器,并依据可行性优先的粒子比较准则从对应的过滤器中选择最优解从而实现粒子的更新。然后,利用工程优化设计标准算例和翼型优化设计实例,将过滤器PSO算法和罚函数PSO算法、遗传算法进行比较研究,结果表明过滤器PSO算法能够获得较好的约束优化设计结果,是求解约束优化问题的一种有效方法。

粒子群优化、过滤器、约束优化、全局优化

TP301(计算技术、计算机技术)

国家自然科学基金11372036,51105040;航空科学基金2011ZA72003资助项目。

2015-05-27(万方平台首次上网日期,不代表论文的发表时间)

共7页

137-143

相关文献
评论
暂无封面信息
查看本期封面目录

机械工程学报

0577-6686

11-2187/TH

2015,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn