基于属性层次模型的单工位状态监测异类传感器布置优化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3901/JME.2014.24.017

基于属性层次模型的单工位状态监测异类传感器布置优化

引用
为了获得足够有效的切削过程状态信息,确保产品质量/系统零部件的安全可靠运行,应采用可靠的监测策略并对传感器进行优化布置。针对单工位多工步切削过程状态监测,基于多工位误差流(Stream of variation,SOV)理论构建单工位多工步信息流模型,通过状态空间变换和主成分分析确定故障/监测量信息传递系数π用来表征不同测点传感器的监测能力;考虑传感器以及故障/监测量之间的特性差异对于系统检测能力的影响,采用6Sigma的因果矩阵(Cause-effect matrix, CEM)和失效模式与影响分析(Failure mode and effect analysis, FMEA)工具分别对传感器以及故障/监测量特性进行量化表示;基于属性层次模型(Attribute hierarchical model, AHM)构建传感器,故障/检测量以及系统检测能力之间的因果关系,设定优化目标和约束条件,并采用元启发式算法-混合蛙跳算法(Shuffled frog leaping algorithm, SFLA)和遗传算法(Genetic algorithm, GA)用于优化计算。提出基于单工位状态监测的六步传感器优化布置策略。实例分析表明,在一定约束条件下,就优化目标而言, SFLA显示比GA更高的优化效率,为单工位状态监测的传感器布置优化提供实践参考。

传感器布置、属性层次模型、单工位、状态监测

TG156(金属学与热处理)

国家自然科学基金51075070;江苏省普通高校研究生科研创新计划CXLX_0097, CXZZ_0139资助项目。

2015-02-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

17-23

相关文献
评论
暂无封面信息
查看本期封面目录

机械工程学报

0577-6686

11-2187/TH

2014,(24)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn