基于QPSO-Volterra的齿轮裂纹故障特征提取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16578/j.issn.1004.2539.2019.07.002

基于QPSO-Volterra的齿轮裂纹故障特征提取

引用
鉴于目前主流齿轮裂纹故障检测方法所存在的局限性(即仅利用系统响应作为研究对象,很少考虑输入对于故障特征提取的作用),并考虑到其作为一种典型非线性系统所蕴含的动态特性,将Volterra级数理论应用于不同状态齿轮啮合传动系统,以充分发挥Volterra级数能够综合利用系统输入、输出数据进行系统非线性特性描述的优势;同时考虑到QPSO算法较高的全局搜索能力,采用该算法对齿轮啮合传动系统Volterra模型进行了时域核辨识.仿真实验结果表明,高阶时域核对于齿轮裂纹故障所引起的系统非线性特性变化非常敏感,可以有效地表征并区分出不同状态下齿轮啮合传动系统的非线性动态特性,达到了预期目的.

Volterra级数、QPSO算法、齿轮裂纹、故障特征提取

43

国家自然科学基金51665027,11462011

2019-08-14(万方平台首次上网日期,不代表论文的发表时间)

共7页

6-11,16

相关文献
评论
暂无封面信息
查看本期封面目录

机械传动

1004-2539

41-1129/TH

43

2019,43(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn