基于时延相关解调—隐马尔科夫模型的故障诊断与模式识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于时延相关解调—隐马尔科夫模型的故障诊断与模式识别研究

引用
针对齿轮性能参数的退化特点,提出了一种时延相关解调(DCE)和隐马尔科夫模型(HMM)相结合的故障模式识别与分析方法.该方法对采集的振动信号进行自相关时延去噪,提取能量特征,分别使用正常状态、齿根裂纹和齿轮断齿的全过程数据训练HMM,建立性能评估模型,然后进行模式识别.最后,通过与标准HMM进行对比,验证了所提出的方法的可行性和有效性.

时延自相关、HMM、Baum-Welch算法、多观测序列

39

2015-03-19(万方平台首次上网日期,不代表论文的发表时间)

128-131

相关文献
评论
暂无封面信息
查看本期封面目录

机械传动

1004-2539

41-1129/TH

39

2015,39(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn