基于改进Elman神经网络的交通标志信息量度量
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-4747.2018.03.001

基于改进Elman神经网络的交通标志信息量度量

引用
为了提高交通标志信息量的度量精度,构建驾驶员认知交通标志信息传输模型,针对传统Elman神经网络算法在求解该问题时因量纲不同而造成数据集的波动性较大、不利于模型逼近的问题,设计了灰色关联度权重分配Elman神经网络算法进行求解仿真.采用1-AGO灰化处理样本数据集,使数据呈现单调递增趋势,弱化了数据的波动性,对数据进行归一化处理,统一数据集量纲,加快了网络训练速度,提高了算法精度.仿真结果表明:灰色关联度权重分配Elman神经网络算法在求解性能上有较大进步,可为交通标志信息度量提供有效解决方案.

交通标志、信息度量、神经网络、灰色关联度

16

U491(交通工程与公路运输技术管理)

四川省科技支撑计划项目2014GZ0019-1

2018-10-16(万方平台首次上网日期,不代表论文的发表时间)

共6页

1-6

相关文献
评论
暂无封面信息
查看本期封面目录

交通运输工程与信息学报

1672-4747

51-1652/U

16

2018,16(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn