基于负二项模型区域日度事故预测及影响因素分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3963/j.jssn.1674-4861.2020.01.008

基于负二项模型区域日度事故预测及影响因素分析

引用
分析区域日度交通事故规模的影响因素,是做好区域日度交通事故短时预测与防控的基础.搜集北京某区域2012—2015年道路交通事故、气象和日期性质等数据,采用负二项回归技术,建立了区域交通事故预测模型;以2012—2014年的数据作为训练集,以2015年的数据为测试集,拟合模型伪R2为0.645,预测期内绝对百分误差的中位数为17.04%,模型预测效果较好,达到了精度要求.模型还表明:①节假日期间事故减少,节假日前1d事故增加,节假日后1d天事故平稳;②1周内,周一和周日事故规模相对较小;③1年内,2月、3月事故规模稍小,7月、9月、10月、11月、12月事故规模稍高;④尾号限行对事故规模影响大,但针对尾号为4和9的限行几乎没有影响;⑤相较于晴天,多数非晴朗天气情况下事故规模反而下降;⑥日平均气温提高会小幅降低事故规模,但日最高气温和最低气温之差增大会增加事故规模.

交通安全、事故数预测模型、负二项回归、气象条件、日期性质

38

U491(交通工程与公路运输技术管理)

北京市公安局课题项目;首都社会安全研究基地项目

2020-06-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

61-66,83

相关文献
评论
暂无封面信息
查看本期封面目录

交通信息与安全

1674-4861

42-1781/U

38

2020,38(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn