基于特征选择和CNN+Bi-RNN模型的小麦抗寒性识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15889/j.issn.1002-1302.2022.10.032

基于特征选择和CNN+Bi-RNN模型的小麦抗寒性识别方法

引用
针对当前小麦抗寒性识别方法受限、资源消耗严重等问题,以国审小麦品种的文本数据为研究对象,利用特征选择算法和深度学习方法实现小麦抗寒性识别研究.首先,使用集成学习中的自适应增强(adaptive boosting,简称AdaBoost)算法和极端梯度提升(extreme gradient boosting,简称XGBoost)算法进行特征选择;然后,将卷积神经网络(convolutional neural networks,简称CNN)抽取的局部特征和双向循环神经网络(Bi-direction recurrent neural network,简称Bi-RNN)抽取的上下文特征融合,构建基于CNN+Bi-RNN的小麦抗寒性识别模型,通过试验表明选择15个特征时CNN+Bi-RNN方法的准确率、F1值和Kappa系数最高,分别为0.7898、0.8102和0.6027.最后,使用合成少数类过采样技术(synthetic minority over-sampling technique,简称SMOTE)对样本均衡化处理,处理后训练模型的准确率均有所提高,其中CNN+Bi-RNN模型的准确率达到0.8292.该方法能够较好地识别小麦抗寒性,提高育种效率.

小麦、抗寒性识别、特征选择、CNN+Bi-RNN、样本均衡化

50

TP391.4;S126(计算技术、计算机技术)

科技部创新方法专项;河南省科技计划;河南省科技攻关项目;河南省科技攻关项目;河南省科技攻关项目;河南省科技攻关项目

2022-06-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

201-207

相关文献
评论
暂无封面信息
查看本期封面目录

江苏农业科学

1002-1302

32-1214/S

50

2022,50(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn