基于全卷积神经网络方法的玉米田间杂草识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15889/j.issn.1002-1302.2022.06.015

基于全卷积神经网络方法的玉米田间杂草识别

引用
杂草是危害农业和林业生产的三害之一,对农业生产、生态环境、生物多样性等均会造成一定的危害.要解决杂草问题首先需要对杂草实现高效准确的识别,通过拍摄新疆旱地玉米大苗田间图像构建数据集,提取玉米苗与杂草2类标签,使用全卷积神经网络(FCN)准确地分割2类目标实现杂草识别.利用图像翻转、镜像、对比度增强、亮度增强等4种增广方法扩增数据集,利用迁移学习技巧,对模型采取非初始参数训练,提升模型识别准确率.结果表明,选择的U-Net模型识别效果最佳,能够有效地克服阴天光照、地膜等因素干扰,实现杂草的快速准确识别,验证集识别正确率96.13%,能够满足杂草识别的实际要求.

杂草识别、全卷积神经网络、深度学习、语义分割、U-Net模型、VGG

50

S126;TP391.41(农业物理学)

国家自然科学基金;新疆维吾尔自治区研究生教育创新计划科研创新项目;新疆维吾尔自治区教育厅自然科学重点项目

2022-05-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

93-100

相关文献
评论
暂无封面信息
查看本期封面目录

江苏农业科学

1002-1302

32-1214/S

50

2022,50(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn