基于经验模态分解和小波神经网络的温室温湿度预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15889/j.issn.1002-1302.2019.01.051

基于经验模态分解和小波神经网络的温室温湿度预测

引用
温室温湿度的准确预测有助于及时调节温室小环境,温湿度预测模型是温室控制的重要基础,提高预测精度有助于提高生产水平.针对温室系统具有非线性、非平稳性等特点,提出一种基于经验模态分解(empirical mode decomposition,简称EMD)和小波神经网络(wavelet neural network,简称WNN)的温室温湿度组合预测方法.首先,利用经验模态分解方法将原始时间序列分解成一系列分量;然后对各分量分别构建小波神经网络模型进行预测;最后叠加各子序列得到预测值.结果表明,运用EMD-WNN组合的温度模型有效性为0.9934,湿度模型有效性为0.9781,且优于单独WNN模型和BP神经网络模型的预测结果,可有效提高短期温室温湿度预测的精度.

经验模态分解、小波神经网络、模型构建、温室、温度、湿度、预测

47

S625.5+1(设施园艺(保护地栽培))

浙江省自然科学基金LQ17G010003;浙江农林大学人才启动项目2012FR070

2019-03-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

211-216

相关文献
评论
暂无封面信息
查看本期封面目录

江苏农业科学

1002-1302

32-1214/S

47

2019,47(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn