GRNN和Elman神经网络在水体溶解氧预测中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15889/j.issn.1002-1302.2017.23.061

GRNN和Elman神经网络在水体溶解氧预测中的应用

引用
针对池塘溶解氧浓度受较多因素影响的复杂性,选择基于广义回归网络(general regression neural network,简称GRNN)、Elman神经网络和BP(back propagation)神经网络算法构建关于溶解氧的预测模型,并将模型应用于水产养殖池塘溶解氧的预测中,力求找到能够长期预测池塘溶解氧浓度的有效方法.研究结果表明,GRNN和Elman神经网络模型的拟合效果均比BPNN(back propagation neural network)的拟合效果好,且有较高的预测精度,平均相对误差绝对值分别为7.48%、11.03%.同时,GRNN和Elman网络模型的算法稳定,计算复杂性低,因此2个模型适合对溶解氧浓度进行预测,有一定的应用价值,可以为水产养殖管理提供依据.

溶解氧、GRNN神经网络、Elman神经网络、BP神经网络、水产养殖管理

45

S126(农业物理学)

现代农业产业技术体系专项CARS-49;中央级公益性科研院所基本科研业务费专项资金2015JBFM22

2018-01-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

217-221

相关文献
评论
暂无封面信息
查看本期封面目录

江苏农业科学

1002-1302

32-1214/S

45

2017,45(23)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn