基于离散脊波变换的农作物图像去噪算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15889/j.issn.1002-1302.2015.05.132

基于离散脊波变换的农作物图像去噪算法

引用
由于农作物生长环境的复杂性,导致在获取农作物图像过程中或多或少存在一定程度的噪声,这给农作物成熟果实的自动化采摘造成了很大不便。因此,结合离散脊波变换,提出了1种农作物图像自适应去噪算法,该算法通过对图像实现多尺度脊波变换,保持低频分解系数不变,对于高频分解系数,首先分别采用改进非局部均值滤波算法( improved non-local means filtering,INLM)以及改进小波硬阈值去噪模型进行消噪;然后实现低频分解系数与各自消噪后的高频分解系数重构,从而获得2幅重构图像;最后实现2幅重构图像的等权融合处理,获得消噪后的农作物图像。结合相关试验,分别将该算法与经典非局部均值滤波算法( non-local means filtering,NLM)、已有的改进非局部均值滤波算法以及小波硬阈值去噪算法进行去噪效果比较,主观、客观分析结果表明,用该研究算法处理后的图像清晰度较高且残留噪声较少。

农作物、图像、离散脊波变换、非局部均值滤波算法、改进非局部均值滤波算法、改进小波硬阈值去噪模型

TP391.4;S126(计算技术、计算机技术)

2015-07-02(万方平台首次上网日期,不代表论文的发表时间)

共3页

425-427

相关文献
评论
暂无封面信息
查看本期封面目录

江苏农业科学

1002-1302

32-1214/S

2015,(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn