高斯过程回归的近似方法及其应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16526/j.cnki.11-4762/tp.2022.06.034

高斯过程回归的近似方法及其应用

引用
作为机器学习的一个分支,高斯过程回归在近年来越来越受到重视,在诸多领域得到了广泛的应用;该方法适用于非线性系统的建模,并可以自动在模型的复杂度和建模精度之间进行权衡;但是由于计算复杂度较高,其难以直接被应用于大数据量的学习任务,因此,很多近似方法被发展出来以降低其计算成本;根据是否将训练数据划分为子集,高斯过程回归的近似方法可以被分为全局近似方法和局部近似方法;文章首先阐述了高斯过程回归的理论基础,接下来对全局和局部这两种近似方法进行了分析,然后介绍了其在实际应用中的情况,特别是在软测量和控制领域,最后进行了总结和对其未来研究方向的展望.

高斯过程回归、近似方法、计算复杂度、软测量、模型预测控制、机器学习

30

TP181(自动化基础理论)

国家重点研发计划2018YFE0105000

2022-07-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

222-228,258

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

30

2022,30(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn