基于一维卷积循环神经网络的深度强化学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16526/j.cnki.11-4762/tp.2022.01.040

基于一维卷积循环神经网络的深度强化学习算法

引用
针对现有深度强化学习算法在状态空间维度大的环境中难以收敛的问题,提出了在时间维度上提取特征的基于一维卷积循环网络的强化学习算法;首先在深度Q网络(DQN,deep Q network)的基础上构建一个深度强化学习系统;然后在深度循环Q网络(DRQN,deep recurrent Q network)的神经网络结构基础上加入了一层一维卷积层,用于在长短时记忆(LSTM,long short-term memory)层之前提取时间维度上的特征;最后在与时序相关的环境下对该新型强化学习算法进行训练和测试;实验结果表明这一改动可以提高智能体的决策水平,并使得深度强化学习算法在非图像输入的时序相关环境中有更好的表现.

强化学习;深度学习;长短时记忆网络;卷积神经网络;深度Q网络

30

TP181(自动化基础理论)

中国博士后科学基金2021M693002

2022-02-28(万方平台首次上网日期,不代表论文的发表时间)

共8页

258-265

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

30

2022,30(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn