基于数据可视化的复杂系统信号时序识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16526/j.cnki.11-4762/tp.2022.01.039

基于数据可视化的复杂系统信号时序识别方法

引用
针对复杂系统研发及运行过程中产生的大量信号可以表征系统运行的时序健康状态这一特性,提出了一种基于数据可视化及卷积神经网络(convolutional neural networks,CNN)智能识别的时序特征识别方法;该方法使用数据可视化技术将信号的时序特征映射至图像,通过训练好的特征识别模型对信号可视化图像进行时序特征的识别,可实现系统运行时的实时智能状态监测;选取了三种典型信号的正常及异常特征,通过模型构建及测试分析,验证该方法对复杂系统信号的时序特征有良好的识别效果,可应用于对时序要求较高的复杂系统进行状态监测及故障诊断.

数据可视化;卷积神经网络;Inception-v3模型;时序;特征识别

30

T391.4;V57

2022-02-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

252-257

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

30

2022,30(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn