基于IBAS-BP算法的热电厂负荷预测及工程应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16526/j.cnki.11-4762/tp.2021.10.036

基于IBAS-BP算法的热电厂负荷预测及工程应用

引用
针对热电厂负荷随机性强、预测精度差、计算时间长等问题,提出一种结合改进天牛须搜索算法IBAS和BP神经网络的组合预测方法;模型以热电厂的历史有功负荷、季节、日期类型和气象数据为输入因子,通过引入精英策略,将单个天牛寻优扩充为群体寻优,同时改进天牛搜索步长,使BP参数在IBAS搜索范围内有效寻优,从而优化BP神经网络的权值,增强其搜索和寻优能力,提高预测网络的性能和精度;采用4个标准测试函数,将改进模型与标准天牛须算法对比;引入均方根误差RMSE、平均绝对百分比误差MAPE精度评价指标对PSO-BP网络、BAS-BP模型、IBAS-BP模型预测结果进行评估;实验结果表明,与其他模型的算例结果相比,IBAS-BP模型具有更好的预测性能;将热电厂负荷预测的结果,作为其厂级负荷优化分配系统(厂级AGC)的输入,通过负荷优化分配系统,得出单台机组未来负荷的预测值,最大限度地降低供电煤耗量,提高热电厂机组运行的经济性.

热电厂;负荷预测;BP神经网络;改进天牛须搜索算法(IBAS);IBAS-BP模型;负荷优化分配

29

TM621(发电、发电厂)

国家自然科学基金资助项目51678470

2021-11-16(万方平台首次上网日期,不代表论文的发表时间)

共6页

199-203,210

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

29

2021,29(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn