10.16526/j.cnki.11-4762/tp.2021.07.007
基于FPGA及RBF神经网络的电磁无损检测技术
电磁无损检测技术是无损检测领域的一个研究重点,针对电磁无损检测技术中的超声波处理,提出了一种基于FPFA的参数优化的RBF神经网络;首先,通过FPGA编程实现对电磁超声波信号的采集,设计了放大电路将原始的电磁超声波进行放大处理已满足RBF神经网络的需求;提出一种采用K-means聚类算法来计算RBF中径向基函数的中心和宽度的参数优化RBF算法,K-means聚类算法的初始聚类中心难以确定会导致RBF算法的参数无法优化,提出KL散度,采用数据密度分析法来计算K-means算法的聚类中心;试验表明,改进后的K-means算法的聚类误差的数量级为10-12,传统K-means算法的聚类误差为10-13,改进后的K-means算法的聚类结果更准;参数优化后的RBF神经神级网络对具有1.02 mm缺陷长度的发动机涡轮叶片的缺陷长度预测结果为0.9~1.1 mm,传统的RBF神经网络的预测结果为0.7~1.2 mm,参数优化后的RBF神经网络的预测结果更准确.
电磁无损检测技术;FPGA;放大电路;RBF神经网络;K-means聚类算法
29
TP183(自动化基础理论)
2021-08-13(万方平台首次上网日期,不代表论文的发表时间)
共5页
31-35