基于FPGA及RBF神经网络的电磁无损检测技术
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16526/j.cnki.11-4762/tp.2021.07.007

基于FPGA及RBF神经网络的电磁无损检测技术

引用
电磁无损检测技术是无损检测领域的一个研究重点,针对电磁无损检测技术中的超声波处理,提出了一种基于FPFA的参数优化的RBF神经网络;首先,通过FPGA编程实现对电磁超声波信号的采集,设计了放大电路将原始的电磁超声波进行放大处理已满足RBF神经网络的需求;提出一种采用K-means聚类算法来计算RBF中径向基函数的中心和宽度的参数优化RBF算法,K-means聚类算法的初始聚类中心难以确定会导致RBF算法的参数无法优化,提出KL散度,采用数据密度分析法来计算K-means算法的聚类中心;试验表明,改进后的K-means算法的聚类误差的数量级为10-12,传统K-means算法的聚类误差为10-13,改进后的K-means算法的聚类结果更准;参数优化后的RBF神经神级网络对具有1.02 mm缺陷长度的发动机涡轮叶片的缺陷长度预测结果为0.9~1.1 mm,传统的RBF神经网络的预测结果为0.7~1.2 mm,参数优化后的RBF神经网络的预测结果更准确.

电磁无损检测技术;FPGA;放大电路;RBF神经网络;K-means聚类算法

29

TP183(自动化基础理论)

2021-08-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

31-35

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

29

2021,29(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn