基于密集连接空洞卷积神经网络的青藏地区云雪图像分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16526/j.cnki.11-4762/tp.2019.09.036

基于密集连接空洞卷积神经网络的青藏地区云雪图像分类

引用
为了提高高纬度地区云雪卫星图像的识别准确率,提出了密集连接空洞卷积神经网络与空洞卷积相结合的方法进行云雪卫星图像识别研究;该方法首先采用常规卷积层对图像进行处理得到特征图,然后采用多个密集块和过渡层对特征图进行处理;其中,密集块中采用跨层连接的方式实现了网络中所用层的特征传递,使得大量云雪特征得到重用,同时减轻了训练过程中的梯度消失问题;密集块中的卷积核采用空洞卷积,在减少参数量的同时扩大局部感受野,对云雪的光谱信息进行特征提取;最后,该方法采用平均全局池化层与全连接层得到云雪图像的预测结果;实验结果表明,与其他机器学习方法相比,该方法能够提高卫星云雪图像的识别准确率,具有良好的泛化能力.

云雪图像识别、特征提取、跨层连接、空洞卷积

27

TP183(自动化基础理论)

国家自然科学基金项目61503192;江苏省自然科学基金BK20161533;江苏省青蓝工程

2019-10-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

169-173

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

27

2019,27(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn