基于双流卷积神经网络的改进人体行为识别算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16526/j.cnki.11-4762/tp.2018.08.059

基于双流卷积神经网络的改进人体行为识别算法

引用
近年来人体行为识别成为计算机视觉领域的一个研究热点,而卷积神经网络(convolutional neural network,CNN)在图像分类和识别领域取得了重要突破,但是人体行为识别是基于视频分析的,视频包含空间域和时间域两部分的信息;针对基于视频的人体行为识别问题,提出一种改进的双流卷积神经网络(Two-Stream CNN)模型,对于空间域,将视频的单帧RGB图像作为输入,送入VGGNet_16模型;对于时间域,将多帧叠加后的光流图像作为输入,送入Flow_ Net模型;最终将两个模型的Softmax输出加权融合作为输出结果,得到一个多模型融合的人体行为识别器.基于JHMDB公开数据库的实验,结果证明了改进的双流CNN在人体行为识别任务上的有效性.

人体行为识别、深度学习、双流卷积神经网络、模型融合

26

TP242(自动化技术及设备)

2018-09-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

266-269,274

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

26

2018,26(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn