基于GA-LM-BP神经网络的锂离子电池预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16526/j.cnki.11-4762/tp.2018.07.010

基于GA-LM-BP神经网络的锂离子电池预测研究

引用
针对BP神经网络训练学习速度慢、容易陷入局部极小值的缺陷,利用LM算法融合高斯-牛顿法和梯度下降法优点的快速性,充分利用遗传算法全局随机搜索强的优势,构建了三层5-6-1型的GA-LM-BP神经网络结构,优化BP神经网络的初始权值和阀值,减少了BP神经网络陷入局部极小值的几率;通过对锂离子电池数据进行了实验,结果表明了该方法预测的有效性.

BP神经网络、锂离子电池、预测

26

TP273(自动化技术及设备)

国防预先研究基金项目9140A27020113JB11393,9140A27020314JB11438

2018-11-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

44-47,108

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

26

2018,26(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn