基于WSSRC单样本人脸识别及样本扩充方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16526/j.cnki.11-4762/tp.2016.10.043

基于WSSRC单样本人脸识别及样本扩充方法研究

引用
由于传统的SRC方法的实时性不强、单样本条件下算法性能低等缺点,提出了融合全局和局部特征的加权超级稀疏表示人脸识别方法(WSSRC),同时采用一种三层级联的虚拟样本产生方法获取冗余样本,将生成的多种表情和多种姿态的新样本当成训练样本,运用WSSRC算法进行人脸识别分类;在单样本的情况下,实验证实在ORL人脸库上该方法比传统的SRC方法提高了15.53%的识别率,使用在FERET人脸库上则提高7.67%;这样的方法与RSRC、SSRC、DMMA、DCT-based DMMA、I-DMMA相比,一样具备较好的识别性能.

稀疏表示分类、样本扩展、WSSRC、三层级联

24

TP391.41(计算技术、计算机技术)

国家自然科学基金61404083;上海海事大学科学基金20120108

2016-11-18(万方平台首次上网日期,不代表论文的发表时间)

共4页

154-157

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

24

2016,24(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn