基于粒子群算法改进SVM的滑模控制研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-4598.2014.10.046

基于粒子群算法改进SVM的滑模控制研究

引用
为了提高离散时间系统的控制品质以及削弱系统抖振,提出了基于粒子群算法(particle swarm optimization,PSO)改进支持向量机(support vector machine,SVM)的滑模控制方法并进行了仿真研究;通过SVM识辨参量模型与PSO寻优处理,获得趋于理想滑模运动的趋近律参数,确保寻优处理时间短、精度高;利用PSO和SVM在线调整滑模趋近律参数,可以克服常规滑模控制中需要事先设定趋近律参数限制的弊端,加快跟踪速度,削弱系统抖振,完善控制质量;仿真实验表明,该方法可以克服因PSO寻优过程中的寻优时间过长等不足,又可解决SVM精度不高或计算量大的缺点;该方法用于离散时间系统是可行、有效的,工程实用性强.

滑模控制、粒子群算法、支持向量机、跟踪、抖振

22

TP273(自动化技术及设备)

河南省科学技术厅”基于物联网的城市智能停车服务系统研究与应用”132102210566

2015-01-20(万方平台首次上网日期,不代表论文的发表时间)

共3页

3230-3232

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

22

2014,22(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn