一种基于IGA-RBF神经网络的传感器动态特性补偿算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-4598.2013.04.088

一种基于IGA-RBF神经网络的传感器动态特性补偿算法

引用
为了改善传感器的动态特性,减小系统测量误差,对传感器动态性能进行分析,提出了一种基于改进型遗传算法(IGA)和RBF神经网络相结合实现其动态特性补偿的算法,并应用到瓦斯传感器的补偿环节;实验结果表明,经IGA-RBF补偿算法后响应时间仅为0.413 s,幅值误差为士5%时的工作频率f≈5.47 kHz,不仅响应速度快,精度高,还具有工作频带宽的特点,较大地改善了多项动态特性指标,能够有效地用于传感器的动态特性补偿,在测试领域中有很好的应用前景.

动态补偿、RBF神经网络、遗传算法、瓦斯传感器

21

TP391(计算技术、计算机技术)

国家自然科学基金70971059;辽宁省科技攻关项目2011229011

2015-01-20(万方平台首次上网日期,不代表论文的发表时间)

共4页

1105-1108

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

21

2013,21(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn