改进的动态最近邻聚类算法在传感器校正中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

改进的动态最近邻聚类算法在传感器校正中的应用

引用
针对动态最近邻聚类算法因中心点选取不当以及隐含层节点较少时,通近效果不理想的问题,提出运用改进的动态最近邻聚类算法构造RBF神经网络( IDARBF神经网络),对传感器输出特性进行校正,有效地克服了原算法存在的问题;实验表明,IDARBF神经网络具有更好的非线性校正能力,运用改进的动态最近邻聚类算法处理后,传感器性能大幅度改善,精度更高,暗伤检侧合格率为100,检测效率128个/min.

IDARBF神经网络、压力传感器、RBF神经网络

19

TP23(自动化技术及设备)

2011-04-20(万方平台首次上网日期,不代表论文的发表时间)

共3页

237-239

相关文献
评论
暂无封面信息
查看本期封面目录

计算机测量与控制

1671-4598

11-4762/TP

19

2011,19(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn