PSO算法和神经网络的入侵检测系统设计
针对入侵检测系统检测率低,整体性能不好的问题,在探讨入侵检测技术和人工神经网络理论的基础上,提出了一种基于PSO算法优化的径向基函数神经网络的入侵检测系统,采用具有全局寻优的功能PSO算法,该算法能够改进传统的RBF神经网络学习策略,弥补RBF神经网络参数设置的不足,采用了来自KDD CUP99的权威数据来进行网络学习和测试,在此基础之上,进行了入侵检测系统的设计与实现,实验结果表明,基于PSO和RBF神经网络的人侵检测系统有效地提高了入侵检测的效率.
PSO算法、入侵检测系统、人工神经网络
18
TP311(计算技术、计算机技术)
2010-12-02(万方平台首次上网日期,不代表论文的发表时间)
共4页
1924-1927