10.3969/j.issn.1671-4598.2005.08.018
基于支持向量机的非线性系统模型预测控制
支持向量机是基于统计学习理论的新一代机器学习技术.由于使用结构风险最小化原则代替经验风险最小化原则,使它较好的解决了小样本情况下的学习问题.又由于其采用了核函数思想,使它把非线性问题转化为线性问题来解决,降低了算法的难度,具有全局最优、良好泛化能力等优越性能,得到广泛的研究.基于上述特性提出了一种基于支持向量机的非线性模型预测控制结构,其中使用遗传算法来求解预测控制律,随后用计算机仿真证明了此控制算法的正确性和有效性.
支持向量机、模型预测控制、遗传算法
13
TP274(自动化技术及设备)
<轻工发酵先进控制与优化软件技术平台>课题2001BA204B01-03
2005-11-17(万方平台首次上网日期,不代表论文的发表时间)
共4页
799-801,826