基于自适应门控图神经网络的交通流预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19734/j.issn.1001-3695.2022.01.0017

基于自适应门控图神经网络的交通流预测

引用
交通流预测是智能交通系统中的重要组成部分,由于交通数据的复杂性,长期而又准确的交通流预测一直是时间序列预测中最具挑战性的任务之一.近年来,研究人员将基于图神经网络的时空图建模方法应用于交通流预测任务,并取得了良好的预测性能.然而,现有的图建模方法仅通过预定义的邻接结构反映道路网络中的空间依赖关系,忽略了各节点之间的序列关联关系对预测的重要性.针对这一局限性,提出了一种自适应门控图神经网络(Ada-GGNN),其核心为通过空间传递模块同时捕获道路网络的空间结构及自适应的时序相关性,并通过门控机制学习节点上的时间序列特征.在两个真实交通网络数据集PeMSD7和Los-loop上的实验结果证明了该模型具有更优越的性能.

交通流预测、时空图、自适应门控图神经网络、时序相关性

39

TP391(计算技术、计算机技术)

国家自然科学基金;四川省科技计划资助项目;西南石油大学科研创新能力提升计划启航项目

2022-08-16(万方平台首次上网日期,不代表论文的发表时间)

共5页

2306-2310

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用研究

1001-3695

51-1196/TP

39

2022,39(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn