基于迁移学习的讽刺检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19734/j.issn.1001-3695.2021.05.0177

基于迁移学习的讽刺检测

引用
准确的讽刺检测对于情感分析等任务至关重要.传统的方法严重依赖于离散的人工制定的特征.现有的研究大多将讽刺检测作为一种标准的监督学习文本分类任务,但是监督学习需要有大量数据,而这些数据的收集和标注都存在困难.由于目标任务有限的数据集可能导致讽刺检测的低性能,为此将讽刺检测作为一种迁移学习任务,将讽刺标记文本的监督学习与外部分析资源的知识转移相结合.通过转移的资源知识来改进神经网络模型,以此提升对目标任务的检测性能.在公开可用的数据集上的实验结果表明,提出的基于迁移学习的讽刺检测模型优于现有较先进的讽刺检测模型.

情感分析;讽刺检测;监督学习;迁移学习;注意机制

38

T391

国家自然科学基金;国家重点研发计划

2021-12-14(万方平台首次上网日期,不代表论文的发表时间)

共5页

3646-3650

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用研究

1001-3695

51-1196/TP

38

2021,38(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn