10.19734/j.issn.1001-3695.2020.06.0169
短文本分类模型的优化及应用
不同于长文本,短文本信息量缺乏,在研究中通常难以获得丰富的语义特征并且难以提取完整的句法特征,因此短文本分类模型的分类效果有待提升.针对这个问题进行了研究,基于ResLCNN模型进行改进,引入神经主题模型,并融合多个神经网络输出特征进行分类.首先,通过神经主题模型提取主题来丰富短文本的信息;其次,将主题信息储存在记忆网络中,并与序列信息进行融合,丰富文本的表示;最后,将其输入具有残差结构的卷积神经网络以及双向GRU中,提取局部以及全局的语义特征,在特征融合之后进行分类.该模型在Google网页搜索公开数据集中取得了较高的准确率和F1值,表明了改进模型在短文本分类任务中的有效性.
短文本、神经主题模型、特征融合
38
TP183(自动化基础理论)
2021-06-09(万方平台首次上网日期,不代表论文的发表时间)
共5页
1775-1779