融合宽残差和长短时记忆网络的动态手势识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19734/j.issn.1001-3695.2018.07.0429

融合宽残差和长短时记忆网络的动态手势识别研究

引用
针对现有的动态手势识别方法对长时间序列的时空特征难以精确匹配的问题,提出了一种基于宽残差和双向长短时记忆网络的时空特征一致手势识别方法.首先使用已经训练好的3D卷积神经网络从视频的空间和时间维度同步提取出短时特征,再经双向空间长短时记忆网络同步解析后形成长时空特征连接单元,并作为残差网络的输入.为了验证算法的有效性,使用Kinect传感器构建了一个全新的多模式手势数据集,在三个手势识别公开数据集SLVM、Montalbano和SKIG上的实验表明,提出的方法有很好的性能表现,识别精度超越了目前已公开的最佳识别率.

手势识别、3D卷积神经网络、长短时记忆网络、宽残差网络

36

TP181(自动化基础理论)

国家科技支撑计划项目;西南科技大学继续教育研究;发展基金资助项目;华中师范大学中央高校基本科研业务费项目;国家自然科学基金项目

2020-05-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

3846-3852

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用研究

1001-3695

51-1196/TP

36

2019,36(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn