基于改进的深度置信网络的电离层F2层临界频率预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-3695.2018.03.038

基于改进的深度置信网络的电离层F2层临界频率预测

引用
提出一种基于深度置信网络(deep belief network,DBN)对本区域未来24h的电离层临界频率f0F2预测的方法.对选取的数据集进行筛选,生成用于训练和测试的数据集;改进DBN基本单元的结构,以适应对连续型数据特征的提取与学习,再通过实验确定DBN的基本结构;最后利用训练数据集对改进后的网络进行训练,实现对f0F2值的预测.与实测值相比较,改进的DBN具有极佳的预测准确性;与浅层结构BP网络和SVM网络相比,改进的DBN不单克服了浅层结构所固有的问题,更表现出对于连续型数据预测的优异性能,尤其是当预测对象受到高维复杂因素影响时改进的DBN模型依旧能表现出很好的预测性能.

f0F2预测、深度学习、深度置信网络、受限波尔兹曼机

35

TP183(自动化基础理论)

国家自然科学基金资助项目61461013;广西无线宽带通信与信号处理重点实验室基金资助项目GXKL06160103;桂林电子科技大学创新团队基金

2018-05-07(万方平台首次上网日期,不代表论文的发表时间)

共5页

825-829

相关文献
评论
暂无封面信息
查看本期封面目录

计算机应用研究

1001-3695

51-1196/TP

35

2018,35(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn